首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
大气科学   27篇
地球物理   2篇
地质学   4篇
海洋学   10篇
自然地理   5篇
  2022年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2010年   3篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2003年   1篇
  1998年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1982年   3篇
排序方式: 共有48条查询结果,搜索用时 171 毫秒
11.
Evidence for a Long-Term Strength Threshold in Crystalline Rock   总被引:3,自引:1,他引:2  
The mechanical response of brittle rock to long-duration compression loading is of particular concern in underground disposal of nuclear waste, where radionuclides must be isolated from the biosphere for periods of the order of a million years. Does the strength decrease without limit over such time, or is there, for some rock types, a lower “threshold” strength below which the rock will cease to deform? This paper examines the possibility of such a threshold in silicate crystalline rocks from several perspectives, including: (1) interpretation of the results of short-term creep tests on rock; (2) numerical analysis of the effect of decrease in fracture toughness due to stress corrosion on the strength of a crystalline rock; and (3) evidence from plate tectonics, and observations of in situ rock stress in granite quarries. The study concludes that there is clear evidence of threshold strength. The threshold is of the order of 40% of the unconfined compressive strength or higher for laboratory specimens under unconfined compressive loading, and increases rapidly in absolute value with confinement. Field evidence also leads to the conclusion that the long-term strength of crystalline rock in situ is of comparable magnitude to the laboratory value.  相似文献   
12.
Journal of Seismology - In this study, fault rupture and its effect on the deformation of the off-fault fractures are numerically simulated. The purpose of the analysis is to determine the distance...  相似文献   
13.
Sphene (CaTiSiO5), a calcium titanosilicate ceramic has been prepared from a powder mixture of CaCO3, TiO2 and SiO2 using vibro-milling for homogenization and activation of precursors. During the high-pressure and high-temperature synthesis (HPS) process at 4 GPa and 1,200 °C, sphene undergoes into phase transition, from room-temperature phase P21 /a to high-temperature phase A2/a. Evidence of that structural phase transition is given in this paper using infrared, Raman spectroscopy and X-ray powder diffraction. Rietveld refinement was employed to get the structural information of the synthesized powder. The most important structural change due to phase transition, the disappearance of the characteristic out-of-center distortion of the Ti atom and moving to the center of octahedra, was confirmed. HPS is an effective method for producing full-dense ceramics without any additives. Reduction of particle size occurred during high-pressure compaction. Microstructure and particle size of both phases were analyzed by scanning electron microscopy.  相似文献   
14.
With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.  相似文献   
15.
The applicability of the one-way nesting technique for numerical simulations of the heterogeneous atmospheric boundary layer using the large-eddy simulation (LES) framework of the Weather Research and Forecasting model is investigated. The focus of this study is on LES of offshore convective boundary layers. Simulations were carried out using two subgrid-scale models (linear and non-linear) with two different closures [diagnostic and prognostic subgrid-scale turbulent kinetic energy (TKE) equations]. We found that the non-linear backscatter and anisotropy model with a prognostic subgrid-scale TKE equation is capable of providing similar results when performing one-way nested LES to a stand-alone domain having the same grid resolution but using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes, while velocity variances are overestimated. A streamwise fetch of 14 km is needed following each domain transition in order for the solution to reach quasi-stationary results and for the velocity spectra to generate proper energy content at high wavelengths, however, a pile-up of energy is observed at the low-wavelength portion of the spectrum on the first nested domain. The inclusion of a second nest with higher resolution allows the solution to reach effective grid spacing well within the Kolmogorov inertial subrange of turbulence and develop an appropriate energy cascade that eliminates most of the pile-up of energy at low wavelengths. Consequently, the overestimation of velocity variances is substantially reduced and a considerably better agreement with respect to the stand-alone domain results is achieved.  相似文献   
16.
The influence of the large-scale subsidence rate, S, on the stably stratified atmospheric boundary layer (ABL) over the Arctic Ocean snow/ice pack during clear-sky, winter conditions is investigated using a large-eddy simulation model. Simulations of two 24-h periods are conducted while varying S between 0, 0.001 and 0.002 ms−1, and the resulting quasi-equilibrium ABL structures and evolutions are examined. Simulations conducted with S = 0 yield a boundary layer that is deeper, more strongly mixed and cools more rapidly than the observations. Simulations conducted with S > 0 yield improved agreement with the observations in the ABL height, potential temperature gradients and bulk heating rates. We also demonstrate that S > 0 limits the continuous growth of the ABL observed during quasi-steady conditions, leading to the formation of a nearly steady ABL of approximately uniform depth and temperature. Subsidence reduces the magnitudes of the stresses, as well as the implied eddy-diffusivity coefficients for momentum and heat, while increasing the vertical heat fluxes considerably. Subsidence is also observed to increases the Richardson number to values in excess of unity well below the ABL top.  相似文献   
17.
Matyasovszky  István  Makra  László  Tusnády  Gábor  Csépe  Zoltán  Nyúl  László G.  Chapman  Daniel S.  Sümeghy  Zoltán  Szűcs  Gábor  Páldy  Anna  Magyar  Donát  Mányoki  Gergely  Erostyák  János  Bodnár  Károly  Bergmann  Karl-Christian  Deák  Áron József  Thibaudon  Michel  Albertini  Roberto  Bonini  Maira  Šikoparija  Branko  Radišić  Predrag  Gehrig  Regula  Rybníček  Ondřej  Severova  Elena  Rodinkova  Victoria  Prikhodko  Alexander  Maleeva  Anna  Stjepanović  Barbara  Ianovici  Nicoleta  Berger  Uwe  Seliger  Andreja Kofol  Weryszko-Chmielewska  Elżbieta  Šaulienė  Ingrida  Shalaboda  Valentina  Yankova  Raina  Peternel  Renata  Ščevková  Jana  Bullock  James M. 《Theoretical and Applied Climatology》2018,133(1-2):277-295
Theoretical and Applied Climatology - The drivers of spatial variation in ragweed pollen concentrations, contributing to severe allergic rhinitis and asthma, are poorly quantified. We analysed the...  相似文献   
18.
19.
The Structure of Coral Communities at Hurghada in the Northern Red Sea   总被引:1,自引:0,他引:1  
Abstract. The community structure of hard and soft corals, with an emphasis on hard corals, was determined by means of line-transects on 9 on-and off-shore reefs of different type and different wave exposure in the Northern Red Sea near Hurghada in Egypt. Coral communities were found to differentiate along a horizontal wind- and wave-exposure gradient. Exposed communities were dominated by Acropora species, sheltered communities by Porites species, and semi-exposed communities by Millepora species. Also, vertical within-reef zonations following a depth gradient were observed; these were unique for each exposure-determined community type. Average transect diversity was highest on semi-exposed reefs, lowest on sheltered reefs. Reef slopes were more diverse than other reef zones. The observed community structure was compared with data from the literature, and widely distributed, roughly comparable hard and soft coral communities were identified.  相似文献   
20.
To investigate the processes of development and maintenance of low-level clouds during major synoptic events, the cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary-layer event was observed after the passage of a synoptic low pressure system. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurements including the analysis of turbulence, cloud microphysics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy (TKE) budget indicated that the cloud layer below 200 m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud-top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is possibly switched to the shear-driven system due to the advection of upper clouds or to the buoyantly driven system due to the lack of wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号